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Abstract—An approximate theory is developed to describe the combined effects of heat and

multicomponent mass transfer in chemically reacting flow systems. The chemical potentials of the

components are expressed in terms of the Planck potentials. The applicability of the theory is
demonstrated for reacting Couette flow and its limitations are also discussed.

NOMENCLATURE

a;, phenomenological coefficients ;

A, chemical affinity of reaction j;

b;;, phenomenological coefficients ;

Cpr concentration of component k;

d;, characteristic length of reaction i;

d, distance between two plates in Couette flow;
Sips phenomenological coefficients;

h, enthalpy per unit mass;

s reaction rate per unit volume of reaction j;
Ji mass-transfer flux;

To heat-transfer flux;

K, generalized flux;

Ly, phenomenological coefficients ;

n, number of species of the mixture;

p pressure ;

Qo phenomenological coefficients;

Q, congruent transformation ;

t, time;

T, temperature;

Laps phenomenological coefficients;

U, velocity;

i, internal energy ;

u,v,w, velocity components;

v, velocity vector ;

X, ), Cartesian coordinates.

Greek symbols

0, dimensionless temperature ;

2, thermal conductivity;

A, diagonal matrix ;

Hies chemical potential of species k;

A viscosity coefficient ;

Vi stoichiometric mass coefficient ;

, scalar component of viscous stress tensor ;
P density;

a, rate of entropy production per unit volume;
i, stress tensor;

1, dimensionless temperature profile component

due to temperature difference;
¢, dimensionless temperature profile
component due to viscous dissipation;

Vi, = — % ~ Planck potential of component k;
Q, dimensionless dissipation factor.

Special symbols

( )%,  variable transformed by congruent
transformation ;
) dimensionless variable.

1. INTRODUCTION
DURING the last decade there has been a consider-
able progress [1-4] in improving our understanding
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of reacting flow systems involving heat and multi-
component mass transfer. A difficult problem that
arises in many of these studies is the possible effects
of thermodynamic coupling, namely, how important
are these effects, if at all? If and when should they be
taken into account? And, most important, do they
exist among chemical reaction rates? Unfortunately,
most of these questions have not yet been resolved
[5-91.

One reason, and not at all the only one, for the
absence of agreement among the investigators in this
field is the lack of an overall theory that takes into
account momentum, energy and mass transfer in
reacting systems, as well as all possible thermo-
dynamic coupling effects. Such a general theory may
allow a direct comparison with experiment without a
priori neglecting the thermodynamic coupling effects,
especially in systems involving large gradients of the
proper fields (which contribute most to the expected
values of thermodynamic coupling effects). Ob-
viously, other types of couplings, such as between
concentrations in the energy and species con-
servation equations, as well as between fields and the
phenomenological coefficients, create additional dif-
ficulties. Therefore, no such general theory exists yet.

In this work we attempt to develop an approx-
imate theory that will take some of these effects into
account while neglecting some others. Thus, while
assuming constant phenomenological coefficients, we
take into account thermodynamic coupling between
heat- and mass-transfer fluxes, thermodynamic
coupling between the chemical reaction rates, and
“normal” couplings between the concentration fields
in the energy and the species conservation equations
in dissipative flow systems with pressure gradients.
The theory presented here is therefore of a limited
value, nevertheless it represents the first analytical
attempt to approximate such effects in reacting flow
systems, that is to say it expands the Brown theory
[10] from nonflow reacting systems to reacting flow
systems.

At first, the mathematical treatment may appear
straightforward, but as one proceeds through, en-
tirely new problems arise, mainly those due to the
convection and dissipation terms involved. Such a
procedure eventually leads to a highly complicated
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theory which is hardly useful due to the many non-
linear terms involved. This theory is available
elsewhere [11]. The present work gives a more
limited, but workable theory whose applicability is
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number of complex phenomena usually encountered
in such systems as reacting boundary-layer flows,
stagnation flows or reacting jet flows may be better
understood by combining the results obtained here

demonstrated here for two fundamental cases that
may be further used by such procedures as linear
combinations. The results obtained indicate that a

with other limited results for coupled flow systems

[12,13].

2. METHOD OF APPROACH AND FUNDAMENTAL FORMULATION
To start with we define a number of 1 independent generalized fluxes K; according to

&E@*%L (1)

We then note that the rate of production of entropy per unit volume for heat and multicomponent mass
transfer in reacting flow systems may be expressed as
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Using now the definition of K, together with the Gibbs-Duhem equation
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the rate of production of entropy may be re-expressed as
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For isotropic systems, the total rate of entropy production originates from three independent
contributions, according to the tensorial order of the fluxes and driving forces involved, i.e.
&)
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If we limit ourselves to incompressible fluid flows, or to cases where the Stokes hypothesis is valid, the scalar
contribution to ¢ becomes

= —— JA; (8
o T & i )
where, as an approximation
r A. .

J;= - ;21 ljj‘—:;:«’- (j=12,....n) 9)
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Here the chemical affinity A, of reaction /' is defined as

Ay = zl Vi (12)
k=
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Using the above definitions the source terms in the species conservation equations become
r

my= Y vydi= Y Y v,.jljj.vkj,<—HT—")= Y obuyy (i=12,...,n) (13)
i=1 1k=1 k=1

ii=

where the phenomenological coefficients b;, are defined by

by =2 vl (ik=12,...,n). {14)
Wi
Using equations (1) and (10) one obtainst
_ n Vi . Vp VT | VpVp
R == VA4t f, —_f
V Ki - jgl auV ‘/’J+/¢p pT ,ftp pT2 ,/lp pzT
:v'f‘.—%viq (i=1,2...0n). (15)

The divergence of J; and J, can be expressed by the familiar species conservation and energy equations.
Equation (15) may then be recast as

+%[p%l::+?:grad7+pdivl7:} (k=1,2...n). (16)
Onsager’s reciprocal relations imply that for isotropic systems, obeying linear laws
a;=ap  (k=12..n (17
L=l  Gi'=12...r) (18)
The definition of b,; and the symmetry relation of /;;. yield
by=by  (k=12...n). (19)

The matrices [a,;] and [b,], being symmetric, can be diagonalized .simultaneously by a congruent
transformation { that is defined by

0ap=U (20)
0bQ = A 20
where A is a diagonal matrix defined by
15— Adl = 0. 22)
Using the transformation
vt = (01" "y, 23)
S =101/ (24)
ot =[0ale; (25)
we finally obtain an expression for the energy equation, in terms of the Planck potentials
vzw:+§ﬂv2p~y—”%ﬂ@;ﬁ]=mw~p%‘?

c¥] di | - -
+—};~ p—&-i-r:grad V4pdivy (k= 12,....n) (26}

The Gibbs~Duhem equation expressed in terms of the transformed variables may now be written as
1 ! -
hgrad - + —; gradp + cFViyEr = 0. 27
grad - + r g pk;kl/fk 27

We now proceed to demonstrate the applicability of this approximate theory by employing it in the analysis
of reacting Couette flows.

*Note that to obtain equation (15) we have assumed that the term (c,/h) is constant. The limitation of this assumption as
well as the assumption of Onsager’s reciprocal relations (see below) should be stressed here in spite of the fact that Brown
[10] and DeGroot and Mazur {5) made the same assumption (but without a due declaration). For this and other reasons
we call this an approximate theory.
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3. MULTICOMPONENT REACTING COUETTE FLOWS

For an incompressible Couette flow the following assumptions apply (see Fig. 1):

r=( U=U~X,
d

The Planck-potential equation for Couette flow becomes

2, % * 2
56;)// A*lll* _S_ng (l = 1,2,...,)1)

A¥#0 for i<r; AY=0 for i>r
and the energy equation is

3 _uu?
e

d yU 2
J q< 2) J,(0)+ TR
The boundary conditions for an impermeable wall are expressed here as

d\ ¥
¥ ey _Y¥i
J? (i 2) 3y

The solution of equation (32) with (35) yields

2y
o L0t 2y et (e (4) "G,
= - A T \g) @)

2h cosh ‘7. sinh 3:

r = _Ei[" ZZ yi+d (O)y] (i >r)

Upon integration this equation gives

where the characteristic length d; is defined by

2

LT

The temperature profile may now be obtained by integration of the Gibbs—Duhem equation, viz.,

h T | 3 a.p*

T2 Z* =0

T(y)-TO)=— Z () -]

c¥ d
L +-1=0 i=1,2,...
con J‘*(“z) =t

(32)

(33)

(34)

(36)

(37

(38)

(39)



Heat and mass transfer in reacting flow systems 861

The above solution will now be further detailed for a binary system with a single chemical reaction.
Equation (39) gives [after inserting y* as calculated in (36) and after some manipulations]

2 d, . gz o __4_ , g>
T(y)—’i’(—‘i):éf_(m W[S‘"*‘Q,) s'"h( 7 )|y +s
2 d

> d, d X
(c )dtghd +{c%)

d 2y
d d(cosh e e cOSH ->
2 1 2
2 () {eerr b —lief-r]) @
2 2sinh 4 4

d

1

The above expression is composed of two terms: the first is contributed by the temperature difference AT
between the two plates and the second is due to viscous dissipation.

For frozen flows (d, — o), or for equilibrium flows (d, — 0), the first of these terms is linear and the
second is parabolic:+

2 2 2
[T(y)— T( - %ﬂd = é;;(y + g) +‘;—gz— G}) {(cf)2+<c§)2](‘% - yz) (41)
2 2 2
| e ) (L Eos | I

4. DIMENSIONLESS REPRESENTATION
The following dimensionless parameters may now be defined:

y=% 43)

og) = TV =T @)
a-t0T (p s)
=4 (46)

Af = %7: (47

ot = %— (48)

Then the dimensionless temperature profile is expressed by

7, SR
m*»~Aefaﬁﬁﬁfﬁﬂ}thh> (=) [r e
y)= dtgh{1/d,) + (¢%)?

i dy{cosh 1/d, —cosh 25/d,) 1 =2
Q[c—*z sinh (1/7,) A

For a frozen flow (J, — o0), and for an equilibrium flow (d, - 0), the dimensionless temperature profile is
given by equations (50) and (51); namely by

OGN, o0 = M(y+1)+9[l + (_,,,)] -7 (50)

(D)o, ~0 = AB(T+1) + QG- 7). 1)

For the more general case, [finite d,, as given in equation (49)], 6(y) can be expressed as a linear
combination of two functions z(d,, é*, 7) and ¢(d,, ¢*, 7) (which represent the contributions due to
temperature difference and viscous dissipation), i.e.

8(5) = - A8+ 9. (52)

+T on the right side of equations (40)-(42) represents an average temperature.
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The functions 7 and ¢ are given by

@+ sinh( 33)
T(dy, ¢*, 7) =05 + __ Zcoshljd, o] (53)
ditghl/d, +(*)? o
S e - d 1 1. d, cosh 2y/d
D&, §) =] 025 4=t | g2y DEOSTEVL
AL [ +2(E*)2tgh(1/d,)J Ly +2(E*)25inh(]‘/dl)J' (34)

1(y) is plotted in Fig. 2 for d, = 0.1 and ¢* = 0.1, 1, 10. ¢(¥) is plotted in Fig. 3 for d, = 0.1 and ¢* = 0.1, 1,
10.

The actual temperature profile for any specific situation is a linear combination of t(y), ¢(7), the weighing
functions being A6 and Q.

10 |7

4. CRITICAL CONCLUSIONS

In trying to evaluate the merits of this theory we
first encounter two fundamental problems, namely:

(1) To what extent are analytical procedures, such
i, as the one developed here, useful in comparison with
€0l current computer procedures? This question is
especially pressing when we deal with chemical
kinetics differing from those which can be approxi-
mated by first-order kinetics. Obviously, there is no
%10 - simple answer to this question. Hence, the minimum
that one can say in this respect is that analytical
procedures like the one presented here are useful in
-05 0 05 obtaining approximate parametric trends in com-
plicated systems on which there is no a priori
experimental and/or exact (computerized) infor-
FiG. 2. mation. Such analytical procedures may also be

useful in the evaluation of the validity of a numerical

solution.
& (2) We stress the fact that the approximate theory
presented here remains valid and necessary even
when the assumed thermodynamic coupling between
the chemical reaction rates is neglected. This can be
51 seen from the definition of b, in equation (14), i.c.
when the coupling coefficients {;; vanish for j # ', by,
remains a non-diagonal matrix requiring the math-
ematical procedures presented here. For the speci-
41 fic application presented here, this means that
without neglecting the thermodynamic coupling
between energy and species tluxes, the neglect of the
assumed “thermodynamic couplings between the
chemical reactions” affects only the values of d, and
¢* in the parametric solutions presented in equations
(53) and (54) (i.e. it does not change the form of the
solution). Hence, the approximate theory presented
here is sufficiently flexible to be regarded as a general
procedure for describing the behavior of reacting
flow systems.

(3) Some other simplified applications of the
approximate theory presented here can be obtained
by analytical procedures. These include the case of a
. multicomponent reacting flow in a heated two-
a“;|0\\ dimensional channel. The solution of this case is
available elsewhere [ 11].
4t - (4) Finally, it should be noted that our solution is

in good agreement with the numerical results
y presented by Broadwell [14] for the specific case of
FIG. 3. uncoupled, reacting Couette flows in binary systems.
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TRANSFERT DE CHALEUR ET DE MASSE DANS DES SYSTEMES
D’ECOULEMENT AVEC REACTION: UNE THEORIE APPROCHEE

Résumé—On développe une théorie approchée pour décrire les effets combinés du transfert de la chaleur

et de la matiére a plusieurs composants dans des systémes d’écoulement avec réaction chimique. Les

potentiels chimiques des composants sont exprimés en fonction des potentiels de Planck. On démontre
I'applicabilité de la théorie a I'écoulement de Couette avec réaction et ses limitations sont discutées.

WARME- UND STOFFUBERGANG IN REAGIERENDEN STROMUNGSSYSTEMEN
—EINE NAHERUNGSTHEORIE

Zusammenfassung—Eine Niherungstheorie wird entwickelt, um die kombinierten Effekte von Warme-

und Stoffiibergang mehrerer Komponenten in chemisch reagierenden Stromungen zu beschreiben. Die

chemischen Potentiale der Komponenten werden in der Form von Planck-Potentialen ausgedriickt. Die

Anwendbarkeit der Theorie wird fiir reagierende Couette-Stromung gezeigt, und ihre Grenzen werden
ebenfalls diskutiert.

TEMJIO- U MACCOINEPEHOC B PEATMPVIOIIUX [TPOTOYHbIX CUCTEMAX.
NMPUBJINXKEHHAA TEOPUS

Annorauns — Pa3paboTaHa npubnuxeHHas TEOPHs IS ONMCAHHS OJHOBPEMEHHBIX MPOLECCOB TEIJIO-

M MaccolnepeHoca MHOTOKOMIIOHEHTHBIX XHMHYECKH PEarHpyIOUIHX NPOTOYHBRIX CHCTEM. XHMMHYECKHe

NOTERIHANbI KOMIOHEHTOB BbIpaXaloTcs 4epes noTeHuuansl [Tnanka. Ha npumepe Tewenns Kystra
pearupyowei KHIKOCTH NOKa3aHa IPUMEHHMOCTb TEOPHHM M PAacCMOTPEHBI €€ OrpaHHYEHHS.
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