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Abstract-An approximate theory is developed to describe the combined effects of heat and 
multicomponent mass transfer in chemically reacting Row systems. The chemical potentials of the 
components are expressed in terms of the Planck potentials. The applicability of the theory is 

demonstrated for reacting Couette tlow and its limitations are also discussed. 

NOMENCLATURE 

phenomenological coefficients ; 
chemical affinity of reaction j; 
phenomenological coefficients; 

concentration of component k; 

characteristic length of reaction i; 

distance between two plates in Couette flow; 
phenomenological coefficients ; 
enthalpy per unit mass; 
reaction rate per unit volume of reaction j; 

mass-transfer flux; 
heat-transfer flux; 
generalized flux ; 
phenomenological coefficients; 

number of species of the mixture; 

pressure ; 
phenomenological coefficients ; 
congruent transformation ; 
time ; 
temperature; 
phenomenological coefficients; 
velocity; 
internal energy ; 
velocity components; 

velocity vector; 
Cartesian coordinates. 

Greek symbols 

0, dimensionless temperature ; 
1, thermal conductivity; 

A, diagonal matrix ; 

pk. chemical potential of species k; 

i4 viscosity coefficient ; 

“kj’ stoichiometric mass coefficient; 

I, scalar component of viscous stress tensor; 

P* density ; 
(T, rate of entropy production per unit volume; 
r, stress tensor; 
7, dimensionless temperature profile component 

due to temperature difference; 

4. dimensionless temperature profile 
component due to viscous dissipation; 

$kv = - $ - Planck potential of component k; 

Q, dimensionless dissipation factor. 

Special symbols 

( I*, variable transformed by congruent 
transformation ; 

c-1, dimensionless variable. 

1. INTRODU~ION 

DURING the last decade there has been a consider- 
able progress [ 1-41 in improving our understanding 

of reacting flow systems involving heat and multi- 
component mass transfer. A difficult problem that 
arises in many of these studies is the possible effects 
of thermodynamic coupling, namely, how important 
are these effects, if at all? If and when should they be 
taken into account? And, most important, do they 
exist among chemical reaction rates? Unfortunately, 
most of these questions have not yet been resolved 
[S-9]. 

One reason, and not at all the only one, for the 
absence of agreement among the investigators in this 
field is the lack of an overall theory that takes into 
account momentum, energy and mass transfer in 
reacting systems, as well as all possible thermo- 
dynamic coupling effects. Such a general theory may 
allow a direct comparison with experiment without a 
priori neglecting the thermodynamic coupling effects, 
especially in systems involving large gradients of the 
proper fields (which contribute most to the expected 
values of thermodynamic coupling effects). Ob- 
viously, other types of couplings, such as between 
concentrations in the energy and species con- 
servation equations, as well as between fields and the 
phenomenological coefficients, create additional dif- 
ficulties. Therefore, no such general theory exists yet. 

In this work we attempt to develop an approx- 
imate theory that will take some of these effects into 
account while neglecting some others. Thus, while 
assuming constant phenomenological coefficients, we 
take into account thermodynamic coupling between 
heat- and mass-transfer fluxes, thermodynamic 
coupling between the chemical reaction rates, and 
“normal” couplings between the concentration fields 
in the energy and the species conservation equations 
in dissipative tlow systems with pressure gradients. 
The theory presented here is therefore of a limited 
value, nevertheless it represents the first analytical 
attempt to approximate such effects in reacting tlow 
systems, that is to say it expands the Brown theory 
[IO] from nontlow reacting systems to reacting flow 
systems. 

At first, the mathematical treatment may appear 
straightforward, but as one proceeds through, en- 
tirely new problems arise, mainly those due to the 
convection and dissipation terms involved. Such a 
procedure eventually leads to a highly complicated 
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theory which is hardly useful due to the many non- number of complex phenomena usually encountered 
linear terms involved. This theory is available in such systems as reacting boundary-layer Rows, 
elsewhere [I I]. The present work gives a more stagnation Rows or reacting jet flows may be better 
limited, but workable theory whose applicability is understood by combining the results obtained here 
demonstrated here for two fundamental cases that with other limited results for coupled tlow systems 
may be further used by such procedures as linear [I& 13-j. 
combinations. The results obtained indicate that a 

2. METHOD OF APPROACH AND FUNDAMENTAL FORMULATION 

To start with we define a number of II independent generalized Ruxes & according to 

rz, 5 Ji -Z”* (i = I,2 ,..,, II). (1) 

We then note that the rate of production of entropy per unit volume for heat and multicomponent mass 
transfer in reacting flow systems may be expressed as 

g=-!-J. 
T2 Yg radT--Gndivv-hi:gradv 

Using now the definition of Ri together with the Gibbs-Duhem equation 

Itgrad-!-+!-gradp- i c,grad$=O, 
T PT k=l 

(3) 

the rate of production of entropy may be re-expressed as 

CJ= -+,$ JjAj-GadivY+ i R,,grad -$ 
J 1 k=l c 1 

-A.gradp-f<:gradi5>0. 
hpT 

(4) 

For isotropic systems, the total rate of entropy production originates from three independent 
contributions, according to the tensorial order of the fluxes and driving forces involved, i.e. 

(zO= --$ ,$ JiAj-$rrdivV>O (5) 
I- 1 

_ 

ot = - i R,.grad 
k=l 

-L.gradp>O 
bT 

u2= -ff:gradp>O. (7) 

If we limit ourselves to incompressibIe fluid flows, or to cases where the Stokes hypothesis is valid, the scalar 
contribution to u becomes 

00 = - + ,$ JjAj (8) 

J 1 

where, as an approximation 

Jj = (j= 1,2 ,..., n) 

Ki = - i aijv$j+,/;,s (i= 1,2,...,n) 
j-1 

2 = j$, q*,lyj “I- fy VP. 

Here the chemical afinity Aj. of reaction! is defined as 

Ai.= i “kj’pk’ 
k-l 
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Using the above definitions the source terms in the species conservation equations become 

where the phenom lenological coefficients b, are defined by 

bik E i vijlji.~lkj, (i,k= 1,2 ).‘., ,I). 
j,j 

Using equations ( I ) and (10) one obtains? 

8.59 

(13) 

(14) 

(i = 1,2,. .,tJ). (15) 

The divergence of .& and Jq can be expressed by the familiar species conservation and energy equations. 
Equation (15) may then be recast as 

(k = 1,2,. . , n). 

Onsager’s reciprocal relations imply that for isotropic systems, obeying linear laws 

akj = ajk (j,k = f,2 ,..., n) 

ljf = lj.j (&I’ = I,2 ,...) r). 

The definition of 6, and the symmetry relation of ljje yield 

bkj = bjk O’,k = 1,2,...,JJ). 

(16) 

(1-u 

(18) 

(19) 

The matrices [ukj] and [b&j], being symmetric, can be diagonaiized .simultaneous~y by a congruent 
transformation Q that is defined by 

&Q = U (20) 

&Q=A (21) 

where A is a diagonal matrix defined by 

/6-A,a’[ = 0. (22) 

Using the transformation 

II/$ = CQJ-‘tij (23) 
.A; = lit2jJ.& (24) 

4 = [ojk3cj (25) 

we finally obtain an expression for the energy equation, in terms of the Planck potentials 

Vp. VT Vp- Vp 
-__- 

T P 

p+,pdivV (k= 1,2,...,r3). (26) 

The Gibbs-Duhem equation expressed in terms of the transformed variables may now be written as 

hgradi + _f_ gradp + i @VII/: = 0. 
T pT k=1 

(27) 

We now proceed to demonstrate the applicability of this approximate theory by employing it in the analysis 
of reacting Couette flows. 

+Note that to obtain equation (15) we have assumed that the term (s/h) is constant. The limitation of this assumption as 
well as the assumption of Onsager’s reciprocal relations (see below) should be stressed here in spite of the fact that Brown 
[IO] and DeGroot and Mazur [5] made the same assumption (but without a due declaration). For this and other reasons 
we call this an approximate theory. 
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3. MULTICOMPONENT REACTING COUEITE FLOWS 

For an incompressible Couette fow the following assumptions apply (see Fig. 1): 

1’ = 0 r.&J.Y 
d 

vp = 0 

p = const. 

a 
a.y 3 0 for every variable. 

d 

FIG. I 

The Planck-potential equation for Couette flow becomes 

A:#0 for i<r; At = 0 for i > r. 

and the energy equation is 

Upon integration this equation gives 

The boundary conditions for an impermeable wall a& expressed here as 

The solution of equation (32) with (35) yields 

cash 2 
*i*= - J,(“)dic? sinh 2 + ‘Tpu2 di 2 _ f$ d. I 

211 cash $ -0 0 di 4h d d d 
(i < r) 

I 
sinh z 

I 
(i > r) 

where the characteristic length di is defined by 

2 
di = (~~)1/2 

The temperature profile may now be obtained by integration of the Gibbs-Duhem equation, viz., 

h aT + i $2=O a** 
-7-- 

T ay i=l aY 

T(Y)-T(O) = ; .i c:cwY)-wo)1. 
I 1 

(28) 

(29) 

(30) 

(31) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 
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The above solution will now be further detailed for a binary system with a single chemjca~ reaction. 
Equation (39) gives [after inserting I/$ as calculated in (36) and after some manipulations] 

[sinhf$>-sinh( --$)]+(c;)z(y+$) 

The above expression is composed of two terms: the first is contributed by the temperature difference AT 
between the two plates and the second is due to viscous dissipation. 

For frozen flows (d, --* m), or for equilibrium flows (d, -+ O), the first of these terms is linear and the 
second is parabolic:+ 

(41) 

(42) 

4. DIMENSIONLESS REPRESENTATION 

The following dimensionless parameters may now be defined: 

Y 
‘=;l 

&a = 
T(Y) - 7+(-d/2) 

T 

Q = WZT -yp-- (CV 

ti “di 1”- 

de AJI =: 
T 

d c* = - 
c: * 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

Then the dimensionless temperature profile is expressed by 

e(j) = A0 
2cos~~,I~I,)[sinh($)-sinh( -i)]+(i’*)‘(++J) 

;I,tgk(l/;l,)+ (P)2 

+* 

c 

& a,(cosh l/& -cosh2j,Jd,) 
c** 2sinh(I/;l,) 

t-($-~*) . 1 (49) 

For a frozen flow ((1, --) co), and for an equilibrium flow ((7, -P 0), the dimensionless temperature profile is 
given by equations (SO) and (51); namely by 

49hi,+m 
1 = A@+$)+R I +m 

i 1 (&jj”, (W 

em ‘,,4l= Ae(~+~)~~(~-~*~. (511 

For the more general case, [finite $,, as given in equation (49)], 19(j) can be expressed as a linear 
combination of two functions t(J,, E*, 9) and +(‘I t I, E*, j) (which represent the contributions due to 
temperature difference and viscous dissipation), i.e. 

B(j) = 5+AB+#G. ~52) 

+ Ton the right side of equations (40)-(42) represents an average temperature. 
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The functions T and 4 are given by 
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(F*)zj + --A!___ sinh 

t(d,, c*, j) = 0.5 + __ 
2 cash 1 id, 

d,tghlj;i,+(c*)2 

ti, cash 24’1~7 1 
y2f2(?*)Zsinh(l!‘rl,) 

r(y) is plotted in Fig. 2 for d, = 0.1 and C* = 0. I, 1, IO. $(y) is plotted in Fig. 3 for ci, = 0. I and C* = 0. I, I, 

10. 

The actual temperature profile for any specific situation is a linear combination of r(y), 4(y), the weighing 

functions being A6 and Q 

7 

FIG. 2. 

Y 
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4.CRITlCAL CONCLUSIONS 

In trying to evaluate the merits of this theory we 

first encounter two fundamental problems, namely: 

(I ) To what extent are analytical procedures, such 
as the one developed here, useful in comparison with 

current computer procedures? This question is 

especially pressing when we deal with chemical 

kinetics differing from those which can be approxi- 
mated by first-order kinetics. Obviously, there is no 
simple answer to this question. Hence, the minimum 

that one can say in this respect is that analytical 
procedures like the one presented here are useful in 

obtaining approximate parametric trends in com- 
plicated systems on which there is no N priori 

experimental and/or exact (computerized) infor- 

mation. Such analytical procedures may also be 

useful in the evaluation of the validity of a numerical 

solution. 
(2) We stress the fact that the approximate theory 

presented here remains valid and necessary even 

when the assumed thermodynamic coupling between 
the chemical reaction rates is neglected. This can be 
seen from the definition of hi, in equation (14), i.e. 

when the coupling coefficients ljj. vanish for j # j', bi, 

remains a non-diagonal matrix requiring the math- 

ematical procedures presented here For the speci- 
fic application presented here, this means that 
without neglecting the thermodynamic coupling 

between energy and species fluxes, the neglect of the 

assumed “thermodynamic couplings between the 
chemical reactions” affects only the values of ii, and 
C* in the parametric solutions presented in equations 

(53) and (54) (i.e. it does not change the form of the 

solution). Hence, the approximate theory presented 
here is sufficiently Hexible to be regarded as a general 
procedure for describing the behavior of reacting 

ftow systems. 
(3) Some other simplified applications of the 

approximate theory presented here can be obtained 
by analytical procedures. These include the case of a 
multicomponent reacting tlow in a heated two- 
dimensional channel. The solution of this case is 
available elsewhere [ 1 I]. 

(4) Finally, it should be noted that our solutiqn is 
in good agreement with the numerical results 
presented by Broadwell [14] for the specifc case of 
uncoupled, reacting Couette Rows in binary systems. 
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TRANSFERT DE CHALEUR ET DE MASSE DANS DES SYSTEMES 
D’ECOULEMENT AVEC REACTION: UNE THEORIE APPROCHEE 

Resume-On diveloppe une theorie approchte pour dtcrire les effets combines du transfert de la chaleur 
et de la matiire a plusieurs composants dans des systemes d’ecoulement avec reaction chimique. Les 
potentiels chimiques des composants sont exprimts en fonction des potentiels de Planck. On demontre 

I’applicabilite de la theorie a I’ecoulement de Couette avec reaction et ses limitations sont discutees. 

WARME- UND STOFFUBERGANG IN REAGIERENDEN STRGMUNGSSYSTEMEN 
-EINE NAHERUNGSTHEORIE 

Zusammenfassung-Eine Naherungstheorie wird entwickelt, urn die kombinierten Effekte von WHrme- 
und Stoffiibergang mehrerer Komponenten in chemisch reagierenden Stromungen zu beschreiben. Die 
chemischen Potentiale der Komponenten werden in der Form von Planck-Potentialen ausgedriickt. Die 
Anwendbarkeit der Theorie wird fir reagierende Couette-Stromung gezeigt, und ihre Grenzen werden 

ebenfalls diskutiert. 

TEIIJIO- I4 MACCOIIEPEHOC B PEAFMPYIOIIHfX IIPOTOrIHbIX CMCTEMAX. 
I-IPAEJHDKEHH~ TEOPBS 

AmioTauwn - Pa?pa6oTatia npH6nmuemran TeopHn ann OnHCaHHs OnHoepeMeHHbtx npoueccoe Tenno- 
B MaCCOnepeHoCa MHOrOKOMnOHeHTHL.lX XHMH’teCKH pearHpyKimHX npOTOYHbtX CHCTeM. XHMH’ieCKHe 
IlOTeHuHaHbI KOMnOHeHTOB BbtpaHtamTCH Hepe3 nOTeHUHanbt I-IJtaHKa. Ha npHMepe Te’(eHHII Ky3TTa 

pearHpylOLUeii ZKKHLIKOCTH nOKa3aHa npHMeHHMOCTb TeOpHH H paCCMOTpeHb1 ee OrpaHHHeHHa. 
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